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R K Loide 
Tallinn Polytechnic Institute, 200 026 Tallinn, USSR 

Received 22 April 1983, in final form 17 November 1983 

Abstract. The structure of possible equations for a vector-bispinor is examined. A system- 
atic procedure is given for obtaining the covariant equations with a given particle and mass 
content. It is shown how to derive the particle content and masses for a given equation. 
The relation between the root method and the method based on spin-projection operators 
is given. 

1. Introduction 

The development of supergravity (van Nieuwenhuizen 198 1) points out the importance 
of spin particles in particle physics. For that reason it is of great interest to investigate 
the possible descriptions of spin more thoroughly. From the different representations 
the most suitable for this purpose is the vector-bispinor representation, since it offers 
a minimal dimensional theory that can be derived from the Lagrangian. 

The most familiar of the equations for a vector-bispinor is the Rarita-Schwinger 
equation (Rarita and Schwinger 1941), which describes the single spin 5 state. The 
other equations for a vector-bispinor are multiparticle equations where one or two 
spin $ states are also present (K6iv et a1 1982a, b). Due to the acausality of the 
Rarita-Schwinger equation (Velo and Zwanziger 1969), it is important to investigate 
all the possible equations for a vector-bispinor. It turns out that in minimal electromag- 
netic coupling the acausality defects are present only in the Rarita-Schwinger case. 

The algebraic structure of all possible equations for a vector-bispinor was estab- 
lished using the formalism of spin-projection operators in K6iv et al (1982a, b). The 
mass spectrum of equations with Hermitian matrices was previously investigated by 
Biritz (1975c, 1979). The method based on spin-projection operators is very useful in 
pure algebraic investigations of equations. However, the covariant formalism based 
on Diiac matrices is more suitable for applications. In this paper we give the relation 
between these two formalisms; the prescription for a derivation and also a systematic 
study of equations for a vector-bispinor. The connection between the non-covariant 
matrix form and the covariant tensor/spinor form of some equations has been pre- 
viously considered by Frank (1973) and Cox (1982). We also consider the root method 
which has been frequently used (Ogievetsky and Sokatchev 1977, Berends et af 1979, 
van Nieuwenhuizen 1981). It allows one to derive equations for different spins and is 
also applicable in the superfield case (Ogievetsky and Sokatchev 1977). However, the 
root method is not so universal as the ordinary method of spin-projection operators. 

In  spite of the fact that the multiparticle equations for a vector-bispinor are not 
used so often, it seems that they are also important. Firstly, the multiparticle equations 
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are free from acausality. Secondly, the equations of supergravity are based on multi- 
particle equations. The massless spin + gravitino equation of supergravity (van Nieu- 
wenhuizen 1981) is based on the multiparticle equation (see 5 6). The equations for 
the spinor superfield are reduced in the superspin 1 and 0 cases to the multiparticle 
equations (Loide and Suurvarik 1984). 

A vector-bispinor is also exploited to describe spin f particles only (Capri 1969, 
Chandrasekaran et a1 1972, Loide and Loide 1977). A spin equation for a vector- 
bispinor is obtained in the superspin 0 case for the spinor superfield. 

The paper is planned as follows. We begin with some necessary information 
concerning the formalism of spin-projection operators. Then the general description 
of equations for a vector-bispinor is given. Furthermore we analyse the root method 
and then put the theory into the covariant form. Following this, we give some examples 
of frequently used equations. 

2. General formalism of spin projection operators 

We shall begin with a brief discussion of the construction of wave equations, using 
the formalism of spin-projection operators. We start from the first-order equations 

(ia,p” - m ) $  = 0, (2.1) 

where CC, transforms according to some finite-dimensional representation of the Lorentz 
group. Matrices P” satisfy the following commutation relations 

[ S F ” ,  P P I =  q . ” P P @  - p p ” ,  (2.2) 

where T@’ =diag(+---). The generators of the Lorentz group Sp” satisfy 

(2.3) 

When the rL representation is fixed, the problem reduces to the derivation of P o ;  
the other matrices p“ are then established from (1.2). 

In the following we give the general prescription for deriving P o  in the formalism 
of spin-projection operators (Loide 1972, Loide and Loide 1977, Biritz 1975a, b, c, 1979). 
The structure of P o  is more transparent in the representation where $ is decomposed into a 
direct sum of irreducible representations i = (kt, I t ) :  1 0 2 0 .  . .Or .  Then P o  is written as 
follows 

[ S P Y ,  S P U ]  = q.”PSw + q.Pus”P - q . P P s “ u  - q.“usPP. 

Po  = la,,t,/, (2.4) 

where a,, are arbitrary free parameters. Matrices t, are expressed with the help of 
spin-projection operators t b  

t ,  = c “ , ( S ) t S , ,  (2.5) 
5 

where the summation is over all common spins in representations i and j .  Only those 
t,] are non-zero which correspond to linked representations i and j .  

The most relevant objects in our construction are the spin projection operators tl 
expressed with the help of Clebsch-Gordan coefficients 
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Due to the properties of Clebsch-Gordan coefficients, t i  satisfy 

t i t ; ;  = c3Jkc3ssd;,. (2.7) 

The coefficients a,(s)  in (2.5) are not arbitrary, but are uniquely determined by i 
and j .  In the case of the representation i = ( k ,  I ) ,  we have four different linked 
representations j :  ( k  +f, I +$), ( k - f ,  I-f), ( k - i ,  I +$) and ( k  +f, I - + ) ,  and four differ- 
ent relations for c ~ , ~ ( s ) ,  respectively, 

( k  + I  + 2  + s ) ( k  + I  + 1 - S )  ‘ I 2  

[ 2 ( k + l + l )  1 ’  ( l )  a I J ( s ) =  

( S  + k -  I ) ( s  - k + I  + 1) ‘ I 2  

[ 2k(21+1) I ’  (3) a, (s )= 

( S  - k + I ) ( s  + k -  I + 1) 
(4) aij(s)= [ (2k+1)21  

It is useful to decompose P o  into the sum 

where p’ includes spin-projection operators t i  of a given spin s. Due to (2.7), we have 
p ’ ~ p ’ ~  = S,, , (p ’ r ) 2  and the investigation of P o  reduces to the investigation of matrices 
p’. Moreover, due to (2.7) the investigation of p’ reduces to the investigation of some 
n x n matrix formed from the coefficients a,,arl(s), n is the number of irreducible 
representations which carried spin s. 

The eigenvalues of P o  depend on the choice of free parameters ak The mass 
spectrum of particles described by an equation (2.1) is determined by the non-zero 
eigenvalues of the P o  matrix, *A, as follows: mA = m / A  (Corson 1953, Gel’fand et af 
1963). Physical masses correspond to real A. 

Often the parity operator ir and the hermitising operator A are needed. Then the 
$-representation is composed of mutually conjugate representations-with each rep- 
resentation ( k ,  I )  there is also the conjugated representation ( I ,  k). The general form of 
ir and A is the same, as for P o  

where 

(2.1 1)  

A,, # 0 only in the case of the following representations i and j :  i = ( k ,  k ) ,  j = ( k ,  k) and 
i = ( k ,  I ) ,  j = ( I ,  k )  ( k  # I ) .  The coefficients A,(s) must satisfy 

Au(s) = -A,(s f I ) .  (2.12) 

If we demand invariance under the space reflections and derivability from the 
Lagrangian, we have the additional restrictions 

[ P O ,  TI = 0, (po)’A = Ape. (2.13) 

The relations (2.13) restrict the choice of coefficients a,, d,, and p,, 
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0 0 0 
0 0 0  0 @ 3 / 2  = 
0 0 0  0 ’  

t : y  0 0 0 

The equation (2.1) can be derived from the Lagrangian 

L = $(t+lt+Af?”dp$ - (c,’Af,,P”$) - m(c,’A$. (2.14) 

The derivation of higher-order equations is in principle the same (Loide 1972). If 
we have the nth-order equation 

(id+, . . . idpnpPl - m“)$  = 0, (2.15) 

the matrices p n  satisfy the following commutation relations 

[ S + V ,  p” ’  ”“1 =c 77”hp”l ” pn - 1 , P  +”I *I ” ”” (2.16) 

The general form of P o  is the same as in the case of the first-order equation (2.1) 
and is given by (2.4); t,, are expressed with the help of (2.5). The difference is that in 
the case of a given representation i there are more linked representations j ,  and the 
coefficients aV(s)  are not in general uniquely determined. In the case of representations 
i = (1, f )  and j = (f, l), for example, (2.8) shows that in the case of a first-order equation 
t,, = ti’2 +ftL”, i.e. both spin-projection operators ti’’ and tfl’ are present. In the case 
of third-order equations there are no restrictions on q , ( s )  and one may set t,, = ti’2 or 

The question arises, why do  we mention here the higher-order equations, since it 
is well known that the equations where n > 2 give the mass spectrum where unphysical 
masses are also present. In the following we demonstrate that the root method operates 
in principle with matrices corresponding to higher-order equations. Also it should be 
mentioned that in papers where the formalism of spin-projection operators was firstly 
used (Weinberg 1964a, b, 1969, Pursey 1965, Tung 1966, 1967), the equations of special 
type, where Po “=PSI were considered (Loide 1972). One of the general relations 
should be separately mentioned: if we have two arbitrary irreducible representations 
i = ( k ,  I )  and j = (k ‘ ,  1’), then for each t i  we get the nth-order equation, where n = 
2 min{(k + k‘),  ( I  + I‘)}.  In the case of the representations i = (1, f )  and j = (f, I ) ,  for 
example, n = 3, as we have mentioned above. 

I 

t, = t y 2 .  

(3.2) 

3. Equations for the vector-bispinor 

In this section we shall illustrate how to exploit the above given formalism in the case 
of vector-bispinor Gmg, and give the description of all possible equations with physical 
mass spectrum (K&v et a1 1982a, b). 

The vector-bispinor is decomposed as 

[ ( f , 0 )0 (0 ,~ ) ]O( f , t )= (1 ,~ )0 (0 , f )O( f ,0 )~ ( f ,  1). 
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I 0 0 at;:2 ;t;i21 

The parity operator v, corresponding to our choice of free parameters a, b and c, 
is 

(3.4) 

The hermitising matrix is the following 

0 0 0 p,(t::’- t i ? )  

0 0 P2t::’ 0 
0 P2t:i’ 0 0 

p1(ti{2- t:(’) 0 0 0 

(3.5) A =  

Derivability from the Lagrangian imposes on the parameters the following condi- 
tions: 

b * ~ 2 = - ~ 1 4  c real. (3.6) 

As we have mentioned above, masses are determined by the non-zero eigenvalues 
of the Po matrix, +A.  In (3.2) we have chosen the non-zero eigenvalues of P3/2 to be 
* I ,  which means that the mass of a spin 3 particle is equal to m. 

The investigation of non-zero eigenvalues of p’” reduces to the investigation of a 
reduced matrix P l 1 2  formed from the parameters in (3.3) 

The characteristic polynomial of P gives the following eigenvalues: 

2A1.2 = c +$* [(c -4)’ +4ab]”’, 

2A3,4= - ( C + $ ) ~ [ ( C - : ) ~ + ~ U ~ ] ’ ” .  

As we can see the eigenvalues of pl12 depend on two real parameters ab and c. For 
physical mass values A must be real, therefore the only restriction on ab and c is 

4ab>-(c-$)’. (3.9) 

The physical values of parameters ab and c may be represented on an ab-c diagram 

(3.10) 

(figure 1). From (3.9) the physical region is determined by the parabola 

4ab = -(c - i)2. 
The points on the parabola correspond to  the coincident eigenvalues 

A ‘ =  A ” =  I C  +;I (3.1 1) 
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ab 

n 

Figure 1. An ab-c diagram. On the line c = -; there are points with the coincident 
eigenvalues A ' = A " .  On the line a b = $ c  there are points where A ' f O  and A " = O .  At the 
special point A ' = A " = O .  

( A '  and A "  denote the non-negative eigenvalues from A , ,  . . . , A4). These points must 
be also regarded as unphysical, since the minimal polynomial of is (P?,2 - = 0, 
and gives the vanishing charge and energy densities (Udgaonkar 1952, Cox 1977). 

On the parabola (3. I O )  there is the special point 

ab = -I 4, c = -I 2,  (3.12) 

where A '  = A " =  0 and P,,2 is nilpotent: (Pi12)'  = 0. This special value of parameters is 
used when we want to describe a single spin $ particle. The equation we get is the well 
known Rarita-Schwinger spin f equation. It is well known (Velo and Zwanziger 1969) 
that the Rarita-Schwinger field coupled minimally to an external electromagnetic field 
leads to acausality. When compared with the other physical equations for a vector- 
bispinor, it appears that all the other equations have no causality defects in minimal 
coupling since the Po are diagonalisable. All the equations with diagonalisable p- 
matrices are causal in the presence of an external electromagnetic field (Amar and 
Dozzio 1975). These causality considerations allow us to classify the equations with 
nilpotent matrices as unphysical (the other points on the parabola (3.10) are unphysical). 

In the physical region there are two notable lines: c = -f and ab = fc (see figure 
I ) .  On the line c = -f there are points with the coincident eigenvalues 

A'=A"=(ab+$) ' / ' .  (3.13) 

On the line ab = $ c  (which is a tangent of the parabola at the special point) there 
These points describe two spin f particles with the same mass m/A' .  

are points where 

A ' =  [ c  +$I, A "  = 0. (3.14) 

These points describe one spin $ particle with mass m/A' .  
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The remaining points in the physical region describe two spin f particles with 
different masses m/A’ and m/A”. While considering the parities, it is useful to 
distinguish four regions in the ab-c diagram: 

region I c +;> 0, c > 2 a b :  A y  > A; > 0, 

region I1 c +;> 0, c < 2ab: A ; > A: > 0, 

region I11 c + f < O ,  c < 2ab: A: > A y > 0,  

region IV c + f < O ,  c > 2ab: A: > A: > 0. 

+ and - denote the parities of corresponding spin f particles when the spin 5 parity 
is chosen to be + I .  Therefore, if A ’ #  A “  we have four different parity combinations 
corresponding to the same mass spectrum. 

From ( 3 . 8 )  it is possible to find the eigenvalues corresponding to the parameters 
ab and c. Sometimes one can choose the non-zero eigenvalues A ‘ #  A “ ;  then the 
parameters are the following: 

region I a b = - A l A 2 + ~ ( A l + A 2 ) - ~ ,  c = A I  + A , - &  
c = A  - A  -1 region I1 ab = A l A 4  + $ ( A l  + A 4 )  - f ,  1 4 2 1  

( 3 . 1 5 )  
region I11 a b = A , h , - $ ( A , - A , ) - &  c = - ( A 4 -  A I )  -4, 
region IV a b =  - A 4 A 3 - i ( A 4 + A 3 ) - &  c = - ( A 4  + A , )  -f . 

It is also interesting to note that the points where one of the eigenvalues A > 0 is 

ab = ( A  - $ ) ( A  - c ) ,  a b = ( A  + $ ) ( A  + c ) .  (3.16) 

The other eigenvalue varies from 0 to W. Therefore the masses of two spin f particles 
may be chosen arbitrarily (the mass of a spin 4 particle is equal to m). 

As we have seen, one can construct equations with a different mass spectrum. In the 
case of the P o  matrix (3 .2)  and (3.31, the equation describes one spin particle, and 
depending on the choice of free parameters ab and c two, one or no spin f particles. 

The vector-bispinor is also used to describe spin f particles only (Capri 1969, 
Chandrasekaran et a1 1972, Loide and Loide 1977). Then the representations (1, f) 
and (i, 1 ) are not linked and therefore the P o  matrix does not contain operators r I4  and t 4 1 ,  
i.e. a14  = a41 = 0. Now P o  = P”’,  P3 l2  = 0, and the factor f in (3 .3)  and ( 3 . 7 )  is absent. The 
physical region of parameters ab and c is determined by the parabola 

4ab = -c’. (3.17) 

constant, lie on tangents of the parabola (3.10): 

The eigenvalues of the P1/’  matrix are the following 

2 A l s 2 =  ~ i ( c ’ + 4 a b ) ~ / ’ ,  2A3,4 = -c  F ( C ’  +4ab)’12. (3.18) 

4. The root method 

Recently the root method has been used (Ogievetsky and Sokatchev 1977, Berends et 
a1 1979, van Nieuwenhuizen 1981). The root method allows us to derive equations 
for different spins, and is also applicable in the superfield case. Here we explain how 
the root method is connected with our previous formalism of spin-projection operators. 
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n3/2 = " 

It turns out that this method is not so universal and seems somewhat artificial, since 
the derivation of equations in the ordinary way is quite simple. 

The general idea of the root method (Ogievetsky and Sokatchev 1977) follows. Let 
IIS be the projection operator which extracts spin s from the field I). Multiplying by 
-0 to a power q which is sufficient to cancel the non-locality of ns, we obtain the 
equation 

(-cI)~II~+ =(m2lq+ .  (4.1) 

The order of equation (4.1) is in general too high. Suppose q = 1 and a first-order 
equation is needed. Now the root method means that one must find an operator p 
defined by 

p2 = -ons. (4.2) 

t : ( *  o o o t ; i 2  o o o 
0 0 0  0 0 0 0  0 

0 0 0 0 '  0 0 0  0 '  
n ; (2  = 

The first-order equation 

reduces, using (4.2), to (4.1). The operator p defined by (4.2) is not in general unique. 
In Berends et a1 (1979) this procedure is somewhat concretised. The field + 

transforms under some reducible representation and contains different spins. The most 
important objects we started with are the spin-projection operators rI:l which extract 
spin s from some sub-representation when applied to +. Next, one must find the set 
of spin transition operators Il; ( i  Zj), so that operators II;, and ni; will satisfy 

n;ni; = 8sst8jknf/. (4.4) 

Now, the root method means that it is necessary to find operators p', which satisfy 

(4.5) 

Equation (4.3) is constructed, using Pi , ,  in the following way: p is a linear combination 
of operators Pi; 

Using (4.5), one must calculate p2 and choose the coefficients a,/(s) which lead to (4.2). 
In the following we express the operators nf, and pi, for a vector-bispinor field 

with the help of our previous spin-projection operators tS. We restrict ourselves to the 
rest system ( p  = 0). Since there is no unique prescription of how to find operators II;, 
the most natural way to give I'Ii is the following 

I 0 0 0 tX21  
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0 0  0 0  
0 ti:’ 0 0 
0 0 t ; i 2  0 ’  

rI;y = 

0 0  0 0  

0 0 0  0 
t i(’  0 0 0 n;{’ = 
0 0 0 t : y ’  
0 0 0  0 

0 tf:’ 0 0 
0 0  0 0  
0 0  0 0 ’  

n 1:’ = 

0 0 t::’ 0 
(4.7) 

From (4.7) we can see that 11:(2 extracts spin 5 and IIf(’  extracts spin f from the 
representation (1, f ) @ ( f ,  1). Similarly, U::2 extracts spin $ from bispinor (f, O ) @ ( O ,  i). 
Operators II;:’ and II:{’ relate linked representations (1, i)CB(f, 1) and (i,O)O(O, 4). It 
should be mentioned that the choice of operators II; satisfying (4.4) is not unique and 
this non-uniqueness is connected with the spin f degeneracy. 

The operators p’, which satisfy (4.5) are 

0 0 0 t : i2  0 0 0 t ; i 2  

0 0 0  0 p ; { 2  = 
0 0 0 ’  0 0 0  0 ’  
0 0 0 t i ( ’  0 0 0 

0 0 0  0 
p:;”= 

0 0 0  0 
0 0 0 t ; i 2  

Pi(’= 0 0 0 

0 0 0  0 

. 

It is not, in general, easy to find p ;  if we start from operators rI;. In our case p i  are 
related to II,: with the help of parity operator 7 ~ :  p:{ ‘= TI I : ;~ ,  p;”= -TI I~’* .  

p’ matrices (3.2) and (3.3), 7~ and A are expressed, using p i ,  in the following way: 

p 3’2 = p ;y, 
7 = p y -  P x2 - kG2, 

p”’ = i p  f:’ + cp::’ +up f:‘ + bpi:’, 
(4.9) 

A = P , ( P : Y - P f ( ’ )  +P’P::’.  

The Rarita-Schwinger equation is now derived in the following way: we start from 
II:;’, and try to find p0=p3’*+fp’* whose square is equal to U:(*. Using (4.5) and 
(4.9), we obtain 

( p o ) 2 = I I : { 2 + ( ~ b  +$)II i (2+(ab  - t ~ ~ ) U & ’ + a ( c + ~ ) I I ~ ~ ~ + b ( c  + f ) I I i ( 2 .  (4.10) 

(Po)’ = II;(2 gives ab = -$ and c = -i. As we can see, the root method is indeed 
applicable. The trouble arises when we consider a multiparticle case. The problem 
is, how to find the combination of matrices II i, the square root of which must be derived. 

While making a comparison with the ordinary method described in 5 2 ,  we can see 
that it allows us to derive P o  directly, i.e. the operators p i .  In the case of the root 
method one starts from operators II’, which are not needed in the construction of Po, 
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and the problem reduces to the derivation of the operators Pt.  Also, there is no general 
procedure for finding p;.  In the covariant description, however, the root method is 
useful since one can more easily derive operators II;, and then combine operators p’, 
which satisfy (4.5). 

5. Covariant y-formalism 

The method of spin-projection operators which we considered in 0 2 is very useful in 
pure algebraic investigations of equations; the formalism of Dirac y-matrices is easier 
to handle in the covariant description of equations for vector-bispinor JI,,. In  this 
section we transpose all the relations obtained earlier to the covariant form, and give 
the method for establishing the particle content and masses of an arbitrary first-order 
equation for the vector-bispinor. 

We start from the operators ne. The generators Spy of the Lorentz group are 

( S K ” ) ; :  = q v x v f :  - v”?):: + ; v p y  (5.1) 

where U@“ = i[yp, y”], { yv, y ” }  = 277,” and the spinor index is suppressed. Using the 
covariant spin operator S’ 

s2 = ;( S~’”S” ,  + (2a,a”/O)S~’PS,,) (5.2) 

(0 = d,dw),  which is decomposed as S 2  = 2113’2 +$II’”, we obtain the covariant spin- 
projection operators 113’2 and II’l2 

( n 3 1 2 ) X  A - - 7 ) A  x -fY“YA -(2/30)a”aA +(6/3n)(aXYA -aAy”), (5.3) 

(5.4) 

Obviously n3’2 is the covariant form of the spin-projection operator II;i2 given by 
(4.1). We denote it as n:{’(d). In order to find the operators corresponds to IIfi’ 
and we must split II”’ into two parts, one of which corresponds to the 
representation (1, i ) @ ( f ,  1 )  and the other to the bispinor (;, O ) @ ( O ,  i). II;i2 is easily 
extracted if we use the fact that in the case of the bispinor only the covariant spin 
operator is S 2  =:I, therefore II:;’ is the operator which seaprates ( i , O ) @ ( O ,  4). The 
bispinor is separated with the help of the first Casimir operator of the homogeneous 
Lorentz group: C, = 4Sp”S,,. The bispinor corresponds to the eigenvalue of C,. We 
obtain (II:$2(a))i =$yxyA; IIi? and ll;{* are calculated from (4.3). The full set of 
covariant operators II;(a) corresponding to (4.7) is 

(n”2): ‘fYxYA +(2/30)a”aA -(6/30)(dxrA -aAyx). 

(n : (2(a) )T  = 7; -fy”yA -(2/30)a”aA(6/3n)(a”yA -aAyx), 

(nfi2(a)); =&y”yA +(2/30)a”JA -(6/3n)(axyA -aAYx), 

(n ;i2( a) ) = aYxYA 3 (5.5) 

(n 1 i2( a)) = -( 1 / 4 h )  7% 

(n:~2(a));=-(1/4J5)y”y, +(1/J30)yX8dA. 

+ ( 1 /&U )dXr?/y,, 

Operators II”,(a) are non-local, except for n:i2(a), and contain U-’. 
It is not easy to find the square roots, since the non-local structure of p ;  is different. 

More easily, one can find the square root of II:{’(d), which is equal to 
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(p i i2 (a ) ) ;  = y"dyA/4&i'. The other Pb'2 are calculated from (4.5). The full set of 
operators P i ( d )  corresponding to (4.8) is 

(@:('(a)); = (I/&i)(dv; -fa"yA -faAyx +fy"dyA)-(2/303'2)da"a,, 
(p!i2(a)); = (1/3JO)(fy"gyA -a%yA -aAyx) +(4/303")da"aA, 

(P : i2 (a ) )  ; = ( 1/4fi) y"dyA  (5.6) 

(Pfi2(a)); = (l/JO)(a"yA - t y " d y A ) ,  

(P;i2(a)) ; = ( l / f i ) (  Y X a A  -4y'dyA 1. 
The non-local terms are and U-3'2. As we have mentioned in 0 2, the spin- 
projection operators and Pfi2)  lead to a third-order 
equation because the non-local term is present in operators @:{'(a) and Pfi2(a).  
In order to obtain the first-order equation, one must eliminate these non-local terms. 
It is easy to see that the only possible combination is P:{ '(a) +f/?;{'(a) 

t: i2,  t t i 2  and t:i2 (or 

(pii2(a) + f p : i 2 ( a ) ) ;  = ( l / f i ) ( d v T  - f Y x a A  -fa%yA + i y x d y A ) *  (5.7) 

The reason why the spin-projection operators t:i2 and t ! i 2  are uniquely related in the 
first-order equation: f , 4=  t:i2 

is, from (4.9), (5.6) and (5.7), written in 
the following general form 

has now been explained. 
The general first-order equation for 

iJn(p:i2(a)+fpf:2(a)+cpi:2(a)+apfi2(a)+bP:i2(a));+A = m+". (5.8) 

Choosing the parameters a, b and c from the physical region (see figure l) ,  we can 
write down all the possible equations for +uw 

Usually the most general equation for is written as follows: 

( id -  m)+" +Aia"yA+A +By"iaA+A +Cy"(i,d)yA$A = O  (5.9) 

or in the standard form (2.1) 

i(apPp)T+A = m+", 

where 

( p ' ) ; =  ~'7; +AT'%~A +ByX7:  + C y x y p y , .  (5.10) 

It is easy to find a relation between the coefficients A, B, C and the parameters a, 
b, c :  

A = k ( 2 h a - 3 ) ,  a = ( 6 A + 3 ) / 2 &  

B =:(2& b -3), b = ( 6 B  + 3 ) / 2 h ,  (5.1 1 )  

C = &[9 +6c - 2 h  ( a  + b ) ] ,  c = f ( 2 A + 2 B + 8 C - l ) .  

The role of (5.1 1) is twofold-if we choose, using the formulae of 0 3, the parameters 
a, b and c corresponding to a given mass spectrum, we can write down the general 
equation (5.9); on the other hand, if the equation (5.9) is given, we can find the 
coefficients a, b and c from A, B and C and therefore the particle content and mass 
spectrum of the given equation. 
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In order to write down T and A matrices, we first give the matrices p> in (4.8) 
2 0 0 x 0  (p:i2): = -37 7 TA +?OTT + i Y x Y o Y A  - i T o x Y A  -fYx?70h 9 

4 0 0 x 0 I 0 x  1 x 0  ( P I ~ ’ ) T = ~ Y  T T A - ? ?  y A - 3 ~  T A  + A Y ~ Y O Y A ,  

( p  ;i2) T = a yxYo Y A  9 (5.12) 

(pI?)f: = (1/J5)(T0xYA - ~ Y x Y o Y A ) ,  

(@!2i2): = ( l / J ~ ) ( y x ~ o h  -ayxyoYA 1. 
The parity operator has a standard form. From (4.9) and (5.12) we obtain 

(T):=-2Y 0 77 o x  T A + Y o T T .  0 (5.13) 

The hermitising matrix A is given by (4.9). Due to (3.6), we obtain p2 = - ( a / b * ) p , .  

(A);=-2yoToxT: +yo7)T +a(l-a/b*)yxyoyA. (5.14) 

In the case of ab > 0 the expression for A may be simplified. We may always operate 
with real a and 6, and take a = b. Then A =  T. If ab < 0, A # T. 

While operating with equations and Lagrangians for the vector-bispinor $,+ we 
met with some ambiguity which we shall try to explain. A depends on the choice of 
P o  matrix and satisfies (Po)’A = Ape. On the other hand, it defines an invariant scalar 
product which is consistent with the Lagrangian (2.14). If  we define the conjugated 
wavefunction 

$ = $+A, (5.15) 

$4 = $‘A$ = -GP+” +a(l-  a/b*)qvyvyV+” (5.16) 

= $:yo is the Dirac conjugated wavefunction. Therefore, in general, $+ # 

We set p ,  = 1 ,  and now from (4.9) and (5.12) 

we have 

where 
-&+”. 

The Lagrangian (2.14) is written as 

L = &$avpP+ - $&;P~J I )  - m$+. (5.17) 

Variation with respect to $ and + gives the equations 

(ia,p” - m)+ = 0 and $(iZFp” + m> = 0. (5.18) 

Usually L is varied with respect to Dirac conjugated wavefunction $&, and then 
the equation obtained has a form 

(idpa” - mM)JI = 0, (5.19) 

where M # I is some non-singular matrix. The equation (5.18) is obtained if we 
multiply (5.19) from the left by M - ’ .  

particles. 
These equations are written in the following general form: 

As we have mentioned in § 3, (La, is sometimes used to describe spin 

AiaxyA$A +ByXiaAlLA + CyX(i,A)yA$” = m+”. (5.20) 

The parameters A, B, C and a, b, c are related in the following way: 

a = h A ,  b = J T B ,  c = A + B +4C. (5.21) 

The eigenvalues of p”’ are calculated from (3.18). 
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Concluding this section, it is worth pointing out that the set of operators IIi and 
j3; satisfying (4.4) and (4.5), is not unique. In § 4 we derived them, using the ideas 
based on the formalism of spin-projection operators t i .  The operators n;(a) and p;(a) 
in this section are derived similarly. Another set of operators P t  is used by van 
Nieuwenhuizen (198 1). These operators are related in the following way 

(5.22) 

6. Examples 

In this section we give some examples of often used equations for the vector-bispinor 
*a,. 

6.1. The Dirac equation 

From a number of single mass equations there exists one which describes one spin 4 
and two spin particles with the same mass m (Loide and Loide 1977, Kbiv et al 
1982a, b). This corresponds to the parameters ab = a  and c = -f. If we choose a = b = 
f J 3 ,  we obtain from (5.1 1) A = B = C = 0 and the equation (5.9) reduces to the Dirac 
equation 

(6.1) (id - m)$" = 0. 

If we add a,+" = yx$" =0,  we obtain the Rarita-Schwinger equation (Rarita and 
Schwinger 1941). 

6.2. The Rarita-Schwinger equation 

The parameters corresponding to the Rarita-Schwinger equation are ab = -4, c = -4. 
The most natural choice is a = -b = f, but usually the non-symmetrical choice is used. 
The equatcon, given by Velo and Zwanziger (1969) corresponds to the parameters 
a = -3/2J3, b = 1/2J3 or A = -1, B = -C  = -;, and the equation (5.9) reads 

( i d - m ) + "  -ia"yAtjA -fiyXa,+A +fiy"dyA+A =o. (6.2) 

The equation given by Vel0 and Zwanziger (1969) is derived from the Lagrangian 
L = i$a,P"$ - m$$ but varied with respect to $p: 

L= -i$,,d$, +i&,apyA+A +i$,ypaA+A-i~,ypdyA$A +m$,$' - m$,y@yA+', (6.3) 

id$" -iapyA@ -iypaA+" +iypdyA@ - m ( T / ; ;  - y @ ~ y ~ \ ) $ ~  =o. (6.4) 

(6.4) is written in the form (5.19), where it4; = 77; - yWyA. Multiplying (6.4) from the 
left by ( i t 4 - I ) ;  = q;--fyXy,, we obtain (6.2). 
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6.3. SO(1, 4)-type equation 

In the papers by KSiv et a1 (1970), Loide (1971) it is shown that the Rarita-Schwinger 
equation is equivalent to the following SO( 1,4)-type equation 

(ia- m)+" - (1  +i)idxyA+A - ( 1  -i)iyxa,+^ + yX,dyA+' = 0, (6.5) 

with subsidiary conditions y,,$, = a,+̂  = 0. The equation (6.5) corresponds to 
the parameters a = -fh (1 +2i), b = -fh ( 1 - 2i), c = and the matrices 

SP'5 = fpP (6.6) 

generate the SO( 1,4) algebra. 

6.4. 

The superfield equation for a spinor superfield, derived by Ogievetsky and Sokatchev 
(1977), leads in the case of superspin 1 to the following equation (Loide and Suurvarik 
1984): 

(6.7) (ifi- m)+% -$yXaA+' = 0. 

Now we have ab = i, c = -:, which gives the masses m and $m. Equation (6.7), therefore, 
describes spin : with mass m and two spins f with masses m and j m .  The state with 
mass is eliminated by the additional condition a,+, = 0. 

6.5. 

In simple supergravity (van Nieuwenhuizen 1981), the massless gravitino field is 
described in the flat limit with the help of the following equation 

(6.8) 

It is interesting to note that the corresponding massive equation i ~ ~ " ~ " y ~ y , d ~ + ,  = m$p 
which may be written as 

E P u P u  5 Y Y d p * v  = 0. 

(iB- m)+" -i#'yA+A -iyPaA+A +iyP,ir'yA+A = O  (6.9) 

gives us ab = : and c = 5. Now ab = ic, and therefore (6.9) describes one spin 3 particle 
with mass m and one spin i particle with mass f m .  

6.6 

From spin 4 equations we note the one which corresponds to a = b = 1, c = 0 (Loide 
and Loide 1977). This equation describes two independent spin f particles with the 
same mass m. In the representation where $ is decomposed into a direct sum, we 
have two independent equations for representations (1,  i ) @ ( f ,  0) and (0, f)@(& 1). 
Using y-matrices the corresponding equation reads 

( i /J j ) (axyA + y X a h  - f y " ~ y A ) + ~  = m+x. (6.10) 

6.7. 

The superfield equation for superspin 0 (Loide and Suurvarik 1983) gives the following 
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equation in the case of spinor superfield (Loide and Suurvarik 1984): 

$(a" - -yXf i -yA+'  +fiy"a,$' = m+". (6.1 1) 

Now a b = ; ,  c =  -a  and we have A ' =  1 ,  A " = f  from (3.18). Equation (6.11) describes 
two spin & particles with masses m and 4m. 

7. Conclusions 

In this paper the full description of all equations for a vector-bispinor +bow has been 
given. In order to simplify the use of the formulae given above we outline once more 
the general procedure for writing down an equation corresponding to a given mass 
spectrum, or to establish the particle content and masses of a given equation. 

7.1. Equations with given mass spectrum 

7.1.1. Spins $ and f. Spin has mass m ;  choose the masses of spin 4 particles m/A'  
and m/A". Parameters ab and c are determined from (3.13), (3.14) or (3.15). Now we 
choose a, b and c, coefficients A, B and C are calculated from (5.11), and the 
corresponding equation is given by (5.9). 

The scalar product and Lagrangian are found with the help of (5.16) and (5.17), 
respectively. 

7.1.2. Spin f. Choose the masses m/A'  and m/A".  Parameters ab and c are determined 
from (3.18), A, B and C from (5.21). The corresponding equation is given by (5.20). 

7.2. Masses and particle content of a given equation 

7.2.1. Spins 1 and &. Equation (5.9) is given; parameters a, b and c are then determined 
from (5.1 1). Formulae (3.8) give us the eigenvalues A '  and A",  which in turn determine 
the masses and particle content. 

7.2.2. Spin 4. Equation (5.20) is given; parameters a, b and c are determined from 
(5.21) and eigenvalues A '  and A "  from (3.18). 

In  conclusion we want to point out that the equations for a vector-bispinor in the 
special form (5.19) were previously analysed by Baisya (1971). Thicanalysis corre- 
sponds to the following special choice of parameters: A = - 1 ( a  = -4J3), and the other 
parameters are arbitrary. The specially mentioned cases I 1  and 111 correspond to the 
lines ab = &c and c = -4 in the ab-c diagram (see figure l ) ,  respectively. 
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